Acta Crystallographica Section E

## Structure Reports

Online
ISSN 1600-5368

Mariusz Kedziorek, ${ }^{\text {a }} \boldsymbol{+}$ Klaus Hafner ${ }^{\text {b }}$ and Hans J. Lindner ${ }^{\text {b }}$ *
${ }^{\text {a }}$ Institute of Organic Chemistry, Polish Academy of Sciences, ul. Kasprzaka 44, 01-224 Warszawa 42, Poland, and ${ }^{\mathbf{b}}$ Institut für Organische Chemie, Darmstadt University of Technology, Petersenstrasse 22, D-64287 Darmstadt, Germany

+ Research fellow at the Institut für Organische Chemie, Darmstadt University of Technology, July 1-September 1, 2002.

Correspondence e-mail:
lindner@oc1.oc.chemie.tu-darmstadt.de

## Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.009 \AA$
$R$ factor $=0.058$
$w R$ factor $=0.157$
Data-to-parameter ratio $=9.9$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2003 International Union of Crystallography Printed in Great Britain - all rights reserved

## (Z)-Azulene-1-carboxaldehyde oxime

In the title compound, $\mathrm{C}_{11} \mathrm{H}_{9} \mathrm{NO}$, the azulene moiety is planar with a delocalized $10 \pi$-electron perimeter. In the crystal structure, the molecules are connected by hydrogen bonds and $\pi$-stacking to form chains running along the $a$ axis.

## Comment

Azulene-1-carboxaldehyde oxime was first obtained by Hafner \& Bernhard (1959) as a crystalline derivative of azulene-1-carboxaldehyde. To determine the configuration of the oxime, the synthesis was optimized. ( $Z$ )-Azulene-1carboxaldehyde oxime, (I), was separated from the $(E)$ -azulene-1-carboxaldehyde oxime and crystallized. No isomerization could be observed in solution in the absence of acids. Compound (I) shows the expected molecular geometry (see Fig. 1), viz. a planar azulene moiety with a delocalized $10 \pi$-electron perimeter [mean C-C distance 1.383 (8) $\AA$ ] and a central bond length of 1.459 (7) $\AA$. The aldoxime group deviates significantly from the azulene plane with a $\mathrm{C} 2-\mathrm{C} 1-$ $\mathrm{C} 11-\mathrm{N} 11$ torsion angle of $-17.1(9)^{\circ}$. The crystal packing is determined by intermolecular hydrogen bonds (Table 1) and $\pi$-stacking, as shown in Fig. 2. Hydrogen bonds connect the molecules into $\pi$-stacked chains running along the $a$ axis.


## Experimental

To a mixture of hydroxylammonium chloride ( $460 \mathrm{mg}, 6.6 \mathrm{mmol}$ ) and potassium acetate ( $668 \mathrm{mg}, 6.8 \mathrm{mmol}$ ) in 40 ml ethanol azulene-1carboxaldehyde ( $1.0 \mathrm{~g}, 6.5 \mathrm{mmol}$ ) was added and the mixture was


Figure 1
A view of (I), with the atom-numbering scheme. Displacement ellipsoids are drawn at the $30 \%$ probability level.

Received 2 April 2003
Accepted 9 April 2003
Online 23 April 2003



Figure 2
A packing plot of (I), viewed along the $a$ axis.
heated to 323 K . After 1.5 h , the solvent was evaporated. Chromatography with silica-gel (hexane/ethyl acetate 4:1) yielded the oxime isomers. Compound (II) crystallized as dark green needles from hexane/ethyl acetate. ( $Z$ )-Azulene-1-carboxaldehyde oxime, (I), m.p. $391-392 \mathrm{~K} ;{ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz},\left[d_{6}\right] \mathrm{DMSO}$ ): $\delta 11.28(s, 1 \mathrm{H}, \mathrm{H} 11 \mathrm{O})$, $8.84(d, 1 \mathrm{H}, \mathrm{H} 8), 8.80(d, 1 \mathrm{H}, \mathrm{H} 2), 8.51(d, 1 \mathrm{H}, \mathrm{H} 4), 8.17(s, 1 \mathrm{H}, \mathrm{H} 11)$, 7.82 (approx. $t, 1 \mathrm{H}, \mathrm{H} 6$ ), 7.48 ( $d, 1 \mathrm{H}, \mathrm{H} 3$ ), 7.40 (approx. $q, 2 \mathrm{H}, \mathrm{H} 5$, H7); $J_{2,3}=4.1, J_{4,5}=9.6, J_{7,8}=9.7, J_{5,6}=J_{6,7}=9.8 \mathrm{~Hz} .{ }^{13} \mathrm{C}$ NMR ( $\left.125.75 \mathrm{MHz},\left[d_{6}\right] \mathrm{DMSO}\right): \delta 140.7$ (C10), 140.2 (C2), 138.9 (C6), 138.4 (C11), 137.8 (C9), 137.7 (C4), 134.1 (C8), 125.2 (C5), 124.7 (C7), 118.6 (C1), 118.7 (C3).

## Crystal data

$\mathrm{C}_{11} \mathrm{H}_{9} \mathrm{NO}$
$M_{r}=171.19$
Orthorhombic, $P 2_{1} 2_{1} 2_{1}$
$a=4.631$ (5) $\AA$
$b=11.068$ (5) A
$c=17.487$ (8) $\AA$
$V=896.3(11) \AA^{3}$
$Z=4$
$D_{x}=1.269 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 6381 reflections
$\theta=3.9-27.1^{\circ}$
$\mu=0.08 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Needle, dark green $0.55 \times 0.10 \times 0.08 \mathrm{~mm}$

## Data collection

Oxford Diffraction Excalibur diffractometer with Sapphire CCD detector
$\omega$ and $\theta$ rotation scans
Absorption correction: none 6381 measured reflections 1176 independent reflections

## Refinement

$\begin{array}{ll}\text { Refinement on } F^{2} & \text { H-atom parameters constrained }\end{array}$
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.058$ $w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0502 P)^{2}\right]$
$w R\left(F^{2}\right)=0.157$
where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$
$S=0.93$
$(\Delta / \sigma)_{\max }<0.001$
1176 reflections
119 parameters
$\Delta \rho_{\max }=0.19 \mathrm{e}_{\AA^{-3}}$
$\Delta \rho_{\min }=-0.17 \mathrm{e}^{-3}$

Table 1
Hydrogen-bonding geometry $\left(\AA^{\circ},{ }^{\circ}\right)$.

| $D-\mathrm{H} \cdots A$ | $D-\mathrm{H}$ | $\mathrm{H} \cdots A$ | $D \cdots A$ | $D-\mathrm{H} \cdots A$ |
| :--- | :--- | :--- | :--- | :--- |
| O11-H11O $\cdots \mathrm{N} 11^{\mathrm{i}}$ | 0.82 | 1.94 | $2.756(5)$ | 173 |
| Symmetry code: (i) $\frac{1}{2}+x-\frac{1}{2}-y, z$ |  |  |  |  |

The position of the hydroxyl H atom was found in difference Fourier maps and refined. The other H atoms were treated as riding atoms. Friedel pairs were merged; the absolute configuration was not determined.

Data collection: CrysAlis CCD (Oxford Diffraction, 2001); cell refinement: CrysAlis CCD; data reduction: CrysAlis RED (Oxford Diffraction, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 1999) and ORTEPIII (Johnson \& Burnett, 1998); software used to prepare material for publication: SHELXL97, CIF and IUCr SHELXL97 template.

We thank H. Fuess, Fachgebiet Strukturforschung, TU Darmstadt, for diffractometer time, S. Foro for technical assistance, and the Fonds der Chemischen Industrie for partial funding. MK thanks the Dr Otto Röhm-Gedächtnisstiftung, Darmstadt, for a research fellowship.

## References

Hafner, K. \& Bernhard, C. (1959). Liebigs Ann. Chem. 625, 108-123.
Johnson, C. K. \& Burnett, M. N. (1998). ORTEPIII. Version 1.0.2. Oak Ridge
National Laboratory, Tennessee, USA.
Oxford Diffraction (2001). CrysAlis CCD \& CrysAlis RED. Oxford Diffraction Limited, Oxford, England.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Spek, A. L. (1999). PLATON. Version of October 1999. Utrecht University, The Netherlands.

